The Chicago Quantum Exchange (CQE) is an intellectual hub and community of researchers with the common goal of advancing academic and industrial efforts in the science and engineering of quantum information across CQE members, partners, and our region. The hub aims to promote the exploration of quantum information technologies and the development of new applications. The CQE facilitates interactions between research groups of its member and partner institutions and provides an avenue for developing and fostering collaborations, joint projects, and information exchange.

Members of CQE are focused on developing new ways of understanding and exploiting the laws of quantum mechanics, the fundamental yet counterintuitive theory that governs nature at its smallest scales. The overarching aim is to apply research innovations to develop radically new types of devices, materials, and computing techniques.

The mission of the CQE is to accelerate discovery and innovation in the rapidly developing areas of quantum technology, and to attract talent, funding, and industry to the Chicago area to become the source for tomorrow’s leading quantum engineers.

Read the 2021 Annual Report
Download the CQE Fact Sheet


Based at the University of Chicago’s Pritzker School of Molecular Engineering, CQE catalyzes research activity across disciplines and member institutions. It is anchored by the University of Chicago, Argonne National Laboratory, Fermi National Accelerator Laboratory, and the University of Illinois at Urbana-Champaign and includes the University of Wisconsin-Madison, Northwestern University, and industry partners.

The CQE brings together the institutions’ intellectual talents, research capabilities and engineering capacities in a powerful collaborative effort to advance quantum science. Together, the universities and national laboratories have more than 100 researchers in various areas of quantum information technology—a set up that makes Chicago a unique destination for researchers and engineers to explore quantum information science in numerous ways.

The University of Chicago

The University of Chicago is a leading academic and research institution that has driven new ways of thinking since its founding in 1890. Leading the research at UChicago are the Pritzker School of Molecular Engineering (PME) and the Physical Sciences Division’s departments of physics, chemistry, computer science, and astronomy and astrophysics, which are home to world-leading research in quantum information science and engineering. Expertise includes quantum computing, quantum communication, and quantum sensing, as well as creating quantum materials using semiconductors, superconductors, and trapped atoms. These materials serve as the basis for building nanoscale electronic, optical, and mechanical devices that operate at the quantum limit. For example, understanding and manipulating the spin of electrons in semiconductors or magnetic flux in superconductors can be used for advancing computing, medical imaging, encryption and other technologies.

UChicago is also one of the nation’s leading institutions for educating and training tomorrow’s quantum engineers, with a quantum research-focused undergraduate major and a training program for graduate students that connects them with industry and the national laboratories.

Learn more about the Pritzker School of Molecular Engineering

Learn more about the Physical Sciences Division

Argonne National Laboratory

Argonne’s research in quantum information science encompasses discovery of new materials and devices for solid-state qubits (the basic unit of quantum information rendered as an electronic or optical device), and photonic and spin-based approaches for reliably manipulating and transmitting quantum information.

Argonne’s priorities include:

  • A facility capable of teleporting quantum states and 30-mile quantum network connecting Argonne and Fermilab that will investigate approaches for overcoming noise at the physical layer of the network and develop new applications of quantum networks.
  • Quantum sensing, particularly as applied to problems in high-energy and nuclear physics, and chemistry
  • Algorithms and software research
  • Hybrid quantum-classical computing systems
  • Complex simulations of chemical processes

The quantum information sciences program leverages Argonne’s expansive experimental and computational infrastructure for research in the physical sciences—including large open-use scientific facilities run by the Department of Energy Office of Science, such as the Advanced Photon Source, the Center for Nanoscale Materials, and the Argonne Leadership Computing Facility.

Fermi National Accelerator Laboratory

Fermilab seeks to leverage the power of quantum science to address problems in data analysis and theoretical physics. High-energy physicists are also extending their expertise in sensor and accelerator technology for quantum software and computing.

The laboratory’s initiatives in quantum information science include:

  • Simulation of quantum field theories
  • Algorithms for traditional high-energy physics computational problems
  • Teleportation experiments and circuit models of quantum gravity systems
  • Application of qubit technologies to quantum sensors in high-energy physics experiments on the sensitivity frontier
    Superconducting quantum systems

As a pioneer both in particle physics and in high-performance and supercomputing, Fermilab capitalizes on its capabilities at the intersection of these areas to solve the intractable problems of high-energy physics. It partners with other institutions in carrying out its quantum initiatives, which are supported by the Department of Energy Office of Science.

Fermilab is America’s particle physics and accelerator laboratory. Since 1967, Fermilab has worked to answer fundamental questions about the universe and enhance our understanding of everything we see around us. The lab’s vision is to solve the mysteries of matter, energy, space and time for the benefit of all.

Learn more information about Fermilab’s quantum science program.

The University of Illinois at Urbana Champaign

The Illinois Quantum Information Science and Technology Center (IQUIST) brings together physicists, electrical engineers, computer scientists, entrepreneurs, and other experts to accelerate ongoing and new efforts in quantum information science (QIS) at the University of Illinois at Urbana-Champaign. IQUIST leverages and consolidates the university’s strengths in this critical research area, priming the Urbana campus to take a leadership role in the coming quantum information revolution—delivering world-changing technologies, a cutting-edge workforce, and entirely new industries to the state and the world. IQUIST collaborators are pursuing several promising lines of fundamental research and engineering to support development of new quantum materials and devices, writing post-quantum computing algorithms, and testing new protocols for quantum cryptography and quantum communications.

Learn more

University of Wisconsin-Madison

The University of Wisconsin-Madison recently admitted its first class of graduate students into their newly designed master’s program in physics-quantum computing. The program is the first degree-granting program in the US dedicated to quantum computing. It provides students with intensive counseling and exposure to job opportunities through a seminar series that brings quantum computing industry spokespersons to campus. 

Northwestern University

Northwestern University’s leadership in quantum sciences stems from robust and diverse areas of research excellence, ranging from materials and chemistry to physics and engineering. Leading in these efforts is the Initiative at Northwestern for Quantum Information Research and Engineering (INQUIRE), which was established to transcend the boundaries of traditional disciplines and converge research, education, and outreach activities in quantum sciences, engineering, and technology across the University. Central to INQUIRE’s mission is the facilitation of partnerships with academic, government, and industrial organizations to accelerate research efforts and new discoveries.

Bridging over 40 faculty across Northwestern and led by an interdisciplinary executive committee, INQUIRE is a highly collaborative initiative focused on advancing quantum information sciences with numerous areas of research excellence.

Northwestern areas of excellence include:

  • Atomic, molecular, and optical physics
  • Material informatics and data science
  • Material synthesis
  • Nanoscale characterization
  • Photonics
  • Superconducting technologies

Learn more about INQUIRE.


Members and partners of CQE are focused on developing new understandings of the rules of quantum mechanics that govern the smallest particles and applying those discoveries to new types of devices, materials, and computing techniques. Partners of the CQE join a strong community of scientists and students that leverage cutting-edge theory, materials, and algorithms at the forefront of quantum computing, communication, and sensing.

Learn more about the Partners Program or contact