Discovery addresses problem of generating and moving energy efficiently

Three scientists from the University of Chicago have run the numbers, and they believe there may be a way to make a material that could conduct both electricity and energy with 100% efficiency—never losing any to heat or friction.

The breakthrough, published Feb. 18 in Physical Review B, suggests a framework for an entirely new type of matter, which could have very useful technological applications in the real world. Though the prediction is based on theory, efforts are underway to test it experimentally.

“We started out trying to answer a really basic question, to see if it was even possible—we thought these two properties might be incompatible in one material,” said co-author and research adviser David Mazziotti, a professor of chemistry and the James Franck Institute and an expert in molecular electronic structure. “But to our surprise, we found the two states actually become entangled at a quantum level, and so reinforce each other.”

Since an untold amount of energy is lost off power lines, engines and machinery every year, scientists are eager to find more efficient alternatives. “In many ways, this is the most important question of the 21st century—how to generate and move energy with minimal loss,” Mazziotti said.

We’ve known about superconductors—a kind of material that can conduct electricity forever with nearly zero loss—for more than a century. But it was only in the last few years that scientists managed to make a similar material in the laboratory which can conduct energy with nearly zero loss, called an exciton condensate.

But both superconductors and exciton condensates are tricky materials to make and to keep functioning—partly because scientists don’t fully understand how they work and the theory behind them is incomplete. We do know, however, that both involve the action of quantum physics.

Read more at UChicago News.

Image: (From left) scientists Shiva Safaei, Prof. David Mazziotti, and LeeAnn Sager discuss a prediction that dual states of matter can exist in the same material–which may be useful for applications. Photo by Eddie Quinones/University of Chicago